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We show how scale-free degree distributions can emerge naturally from growing networks by using random
walks for selecting vertices for attachment. This result holds for several variants of the walk algorithm and for
a wide range of parameters. The growth mechanism is based on using local graph information only, so this is
a process of self-organization. The standard mean-field equations are an excellent approximation for network
growth using these rules. We discuss the effects of finite size on the degree distribution, and compare analytical
results to simulated networks. Finally, we generalize the random walk algorithm to produce weighted networks
with power-law distributions of both weight and degree.
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I. INTRODUCTION

Many networks seen in the real world have a degree dis-
tribution which is a power law for large degrees �1–5�, at
least to some approximation. This means that there are many
more vertices with large degrees, “hubs” of a network, than
one would find with the traditional Erdős and Rényi random
graphs with their short-tailed Poisson degree distribution �6�.
Such long-tailed distributions have been of considerable in-
terest for some time in a wide range of fields, see Ref. �7� for
a brief overview.

On the theoretical side, scale-free graphs are generated in
several models. Most are characterized by a probability, �,
for choosing a particular existing vertex in an existing graph
to which a new edge is to be added. In particular, if a finite
fraction of new edges are attached with probability propor-
tional to the degree k of the existing vertices, ��k��k,
at least for large degree vertices, then the graph will be
scale free �1–3,5,7�. Such attachment of edges with probabil-
ity proportional to the degree of target vertices is often
termed preferential attachment.1 This is a feature of the
model by Simon �8� and of the more recent Barabási and
Albert model �9�.

However, a key result is that if the ��k��k�, then for any
��1 we do not get a simple power law degree distribution
for a large degree in the large graph limit �10�. So, if scale-
free laws are often found in nature, where does the precisely
linear preferential attachment with �=1 come from? Further,
it is crucial to know what the total number of edges is in a

network to provide the normalization for the linear preferen-
tial attachment probability. This is simple for numerical
models and theoretical analysis. However, it is a piece of
global information not usually available at nodes in real sys-
tems. The authors of web pages do not know, nor do they
care, how big the web is, for instance.

It is evident that the processes shaping networks in the
real world are usually local, i.e., they rely mostly on struc-
tural properties of the networks in the neighborhood of a
vertex. Hence realistic models of network evolution should
likewise be based on local rules �11–14�. Here, our focus is
on random walks on networks �15,16�. A random walk on a
graph tends to arrive at a vertex with a probability propor-
tional to the number of ways of arriving at that vertex, i.e.,
the degree of that vertex. A random walk can be viewed as
natural way for preferential attachment to appear using only
the local properties of a graph. For instance, consider the
graph of vertices representing film actors, joined if they have
appeared in the same film �3,5�. One can imagine a new actor
has one or two initial contacts with established actors. They
may not know of any suitable jobs for the newcomer, but
they pass the word on to their contacts. These in turn might
pass the word on to their contacts, until by chance a suitable
job is found. A new edge is formed to an existing node cho-
sen by a walk along existing links in the network and this is
equivalent to choosing a vertex proportional its degree. In-
deed, in anthropology it has long been noted that providing
access to a wider pool of resources than is locally available is
often an important role of many kinship networks.

The random walk algorithm illustrates how the network
structure can be driven naturally to a scale-free form as result
of purely local microscopic processes. It is the very structure
of the graph itself which guides the search, and thus it is not
too surprising that the asymptotic limit has a common fea-
ture, a scale-free distribution. Although the algorithm itself is
an idealization, we argue that the scale-free nature of many
real world networks is a consequence of network evolution
driven by this type of mechanism. For this argument to hold,
the details of the random walk mechanism should not change
the outcome, i.e., the form of the resulting distributions
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1Such a “rich get richer” algorithm echoes the well known Pareto

80:20 law of economics. It does not matter if the graph is growing,
or if it is just being rewired with fixed numbers of edges and ver-
tices, or anything in between. If preferential attachment dominates
for edge attachment to large degree vertices, a scale-free graph will
emerge for large graphs.
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should be robust to variations in the algorithm.
The purpose of this paper is to extend the work of Sa-

ramäki and Kaski �15� and to demonstrate the robustness of
the walk algorithm. First, we will discuss the mean-field
equations for the network evolution, the length scales present
in finite-sized networks, and the form of the degree distribu-
tion for finite-size networks based on preferential attachment
growth. Then, we will present the generalized random walk
algorithm, and compare results from numerical simulations
to theoretical ones. Finally, we will generalize the algorithm
of Ref. �15� to the case of weighted graphs, yielding asymp-
totically scale-free distributions of both degree and weight.

II. MEAN FIELD EQUATIONS

The mean field equations are a good approximation for
the behavior of degree distributions in many different algo-
rithms. These will serve to fix our notation, but solutions to
these approximate equations also match practical models and
we will be referring to them later.

Consider a sequence of graphs �G�t��, consisting of N�t�
vertices and E�t� edges. Here t is a timelike integer param-
eter, where in going from t to t+1 we add a vertex a fraction
� of the time, while each time adding on average a total of m
edges.2 The total number of vertices N�t� and the total num-
ber of edges E�t� grow on average as

N�t� = �
k

n�k,t� = N0 + �t , �1�

E�t� =
1

2�
k

kn�k,t� = E0 + mt , �2�

where the degree of each vertex is k and the number of
vertices of degree k at time t is n�k , t�, the degree distribu-
tion. The probability degree distribution is just p�k , t�
=n�k , t� /N�t�. The average degree K tends to a constant with

lim
t→�

K�t� = lim
t→�

2E�t�
N�t�

=
2m

�
. �3�

The new edges added have one end attached to any new
vertex if it is created, then the remaining ends are attached to
vertices of the existing graph chosen with the attachment
probability �. In the mean field approach, we assume that
the average value for the degree distribution at any one time
can be described by what happens to the graph on average.
This also means that all the parameters � ,m could represent
an average value for each time step, and the equations are
still an approximation to such a growth. The evolution of the
degree distribution is given in such a mean field approxima-
tion by

n�k,t + 1� − n�k,t� = r�− n�k,t���k,t� + n�k − 1,t���k − 1,t��

+ ��k,m. �4�

r ª ��1 − ��2m + �m� . �5�

For the sake of simplicity, we will take the simple and
often studied form for the attachment probability �,

� = pv
1

N
+ �1 − pv�

k

2E
. �6�

This represents a combination of random and preferential
attachment, such that existing vertices are chosen at random3

pv of the time �first term�, while preferential attachment is
used �1− pv� of the time �second term�. Note that both terms
require global information on the network through their nor-
malizations.

The network evolution is therefore governed by four pa-
rameters, r, m, �, and pv. However, for almost all numerical
runs we will work with �=1, pv=0 which corresponds to
pure preferential attachment in the mean field case.

With the attachment probability � of the simple form �6�,
the mean field equation can be solved exactly in the long
time, large N limit. It is also straightforward to show that for
a wider class of attachment probabilities4 � the solutions
tend towards a power law form for a large degree. In particu-
lar for the form �6� one finds �10,17–22�

lim
k→�

lim
t→�

p�k,t� � k−�, �7�

� = 1 +
1

pv�1 −
�

2
	 . �8�

Since we study growing networks, 0��	1, and since now
0� pv	1, we have that 2����. The lower limit of the
power, �=2, can be linked to the requirement that the aver-
age degree is finite, that is, the first moment of the probabil-
ity degree distribution K= �
dk kp�k�� / �
dk p�k�� is finite. As
pv→0 we get attachment to vertices chosen randomly, and
the distribution turns into an exponential,

lim
k→�

lim
t→�

p�k,t� � exp� �

r
k� . �9�

Although the attachment is random, this is not a standard
Erdős-Renyí random graph.

Note that Eq. �8� is a long time, large N solution. How-
ever, all numerical models and all data sets are of finite size.
This introduces some natural scales and one would expect
these to lead to deviations from a simple power law in prac-
tical examples. At low degree, the minimum number of
edges added to a new vertex �here m� sets such a scale.
However, most power laws refer to the large degree behav-
ior. There, for a real system, the continuous part of the spec-

2Note that for a realistic model t is probably a monotonic function
of the real physical time since one might expect large graphs to
grow faster in real time than small ones. However, all we require for
our analysis is that the number of edges added per new vertex is
constant and this in turn provides a definition of our t parameter in
terms of the growth of any real world network.

3If we do not specify, then random means we draw randomly from
a uniform distribution.

4Basically limk→���k is all that is required.
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trum ends around kcont, which can be defined through

p�kcont� =
1

N
. �10�

That is, for k
kcont there will be some degree values in any
one example with no vertices of that degree. Likewise, for
k�kcont, we expect all n�k��0. If we have a power law
distribution, kcont should scale as kcont�N1/�. Another large
scale exists for long-tailed distributions, such as a power law,
where there are vertices with degree k
kcont. For instance,
the vertex of largest degree is the rank one vertex, and its
degree is likely to be k1, where

�
k=k1

�

p�k� =
1

N
. �11�

This scales as k1�N1/��−1� for a power law distribution.
An approximate analytic finite time or size solution to the

mean field equation �4� for the case of pure preferential at-
tachment with number of edges equal to the number of ver-
tices �here m=1, pv=0, �=1� was given by Krapivsky and
Redner �13� �see also Refs. �23–25��. The form is

p�k,t� = p��k�Fs�k,t� , �12�

p��k� =
2m�m + 1�

k�k + 1��k + 2�
. �13�

Asymptotically the finite size scaling function Fs is a func-
tion of x=k / �2t1/2� and it differs from one only for x
1.
With �=3 for this case, we have that N
 t
�k1�2 so Fs�1
only for k
k1. It also follows that it is sensitive to initial
conditions since the vertices of biggest degree are the oldest.
For the initial conditions n�k=m , t=1�=2n�k�m , t=1�=0
and generalizing the arbitrary m but keeping pure preferen-
tial attachment �pv=0,�=1�, we use the approach of Ref.
�13� to find that

Fs�k,t� � erfc�x� +
e−x2

��
�2x + �

n=3

m+2
8

n!
�1 + �1

+ m��m+1,n�xnHn−3�x�	 �14�

and it is made up of the complementary error function erfc
and Hermite polynomials Hn.

The analytic form of the finite size function Fs �14� is a
good approximation to that found from a direct numerical
solution of the mean field equations as Fig. 1 shows.

III. GENERALIZED WALK ALGORITHM

The mean field equations �4� can be implemented in a
straightforward manner, by choosing vertices in the existing
graph at random using the probability ��k� implemented ex-
plicitly in an algorithm. This is done in most cases. As dis-
cussed in the Introduction, the walk algorithm provides a
natural mechanism for such a probability to emerge naturally
from an intrinsic property of the graph. The basic walk algo-

rithm we will consider is merely a generalization of the
original Saramäki and Kaski �15� algorithm:5

�i� Start with any graph6 G�t=0� and start the time
counter at t=0.

�ii� With probability � choose to add a new vertex v0. The
remaining time, let v0 be a random vertex in the graph cho-
sen with probability �. Now start adding new edges, count-
ing from i=1.

�iii� To start the random walk we choose a vertex vi in the
existing graph, G�t�. We will consider several different ways
to do this.

5Preliminary studies of such models were also made indepen-
dently by one of us, T.S.E., in collaboration with Klauke �16�.

6In fact, the way the algorithm is phrased we require that no
vertex has zero degree but with a small adjustment even this limi-
tation could be dropped.

FIG. 1. �Color online� At the top there are three curves for the
scaling function Fs derived from the mean field equations: the ana-
lytic approximation Fs,analytical valid for arbitrary N, and numerical
solutions Fs,numerical for N=105 and N=106. In these networks, at
each time step 1 vertex is added ��=1� with two edges attached
�m=2� using pure preferential attachment �pv=0�. Since we cannot
distinguish the three cases on the lower plot we show the numerical
data divided by the analytic solution on the right hand plot.
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�iv� Now make one step in a random walk on the graph
by choosing one of the neighbors of vi at random.7 Move to
this neighbor and now set vi to be this vertex.

�v� Repeat the previous step l times.
�vi� Repeat from step three m times, increasing i each

time i=1,2 ,… ,m.
�vii� Now create G�t+1� by adding vertex v0 and the

edges ��v0 ,vi� � i=1,2 ,… ,m� to the graph G�t�. At this point
one might also choose to reject some potential edges and
maintain some characteristic of the graph.

�viii� Increase t by 1 and repeat from the second step.
There are several variations within the general algorithm

which we will study. We will indicate our choices by the
binary bits of a parameter v.

�a� The walks can be started from a vertex chosen ran-
domly ��v&1�=1�, as done in Ref. �15�, or by taking a ran-
dom end of a random edge ��v&1�=0�.

�b� One could start a new walk for every new edge
��v&2�=1�. Alternatively, as in Ref. �15�, we could start a
new walk at each time step, the i=1 edge, but then we take
the end of the previous walk vi−1 to start the walk for the ith
edge ��v&2�=0�.

�c� The length of the random walks can be fixed to be
l as in Ref. �15� ��v&4�=0�. This might not be realistic in
many cases so we have also looked at the case where a
further step on the walk is made with probability pl= l / �1
+ l� so that the average walk length was l��v&4�=1�.

�d� The number of edges could be fixed to be m at
each time step as in Ref. �15� ��v&8�=0�. This could be
varied in a similar manner to the walk length, with one edge
always added �to ensure a connected graph� but subsequently
another edge is added with probability pe= �m−1� /m so on
average m will be added ��v&8�=1�.

Intuitively, the initial point of the random walk should be
immaterial for “long” walks. In Ref. �15� it was indicated
that for their algorithm �essentially the �v&1�=1 choice
here� long was just one step.8 Presumably, this indicates that
there is already little correlation between the connectivity of
nearest neighbor vertices, and it is this correlation length,
rather than mean shortest separation or diameter length
scales, which is important. This is also an assumption behind
the mean field approximation, so we should expect that the
mean field equations are a good approximation to graphs
produced from random walk algorithms. This will be con-
firmed below.

For the stochastic choices in options �c� and �d�, the Mar-
kov process used here produces a large peak at small values.
Thus for the walks of random length in case �c�, a fraction
�1− pl� vertices are attached to the vertex at the start of the
walk. If this initial vertex is chosen randomly ��v&1�=1 in
option �a��, and given that one step is often sufficient to

produce reasonable scale-free behavior, then we are actually
reproducing the mixed preferential attachment and random
attachment algorithms mentioned above with pv
�1− pl�
=1/ �1+ l�. This is yet another way that a walk algorithm
might produce various powers � as Eq. �8� indicates. Many
other distributions could be tried for stochastic choices so the
Markov process used here is merely exemplary.

If the length of the walk is zero then we get some special
behavior. If we choose the vertices vi at random, we are then
generating a graph with an exponential distribution for n�k�
�Eq. �9��. On the other hand, choosing to connect to vertices
in the existing graph by choosing the random end of a ran-
dom edge is guaranteed to generate a scale-free graph as
noted in Ref. �23�. Thus we expect that with this start for the
random walks, all graphs are scale-free whatever the walk
length.

Finally, we note that one might often wish to limit the
graphs generated to be simple, with no multiple edges be-
tween vertex pairs and no edges with the same vertex at both
ends. We have done numerical simulations both with and
without this limitation, and found that for N=106 and other
typical values used here, the difference is negligible with a
very small fraction of edges rejected.9

IV. RESULTS FOR UNWEIGHTED GRAPHS

A. Degree distributions

First, we will note how robust the walk algorithm is at
producing scale-free networks. Figure 2 shows the degree
distributions for an exemplary walk algorithm which started
all random walks from a random end of a randomly chosen
edge. This is equivalent to pure preferential attachment if no
walk is made �l=0�. Longer walks or other variations in the
algorithm do not alter this result.

More revealing are algorithms which start their walks
from a randomly chosen vertex as seen in Fig. 3. As expected
from the mean field approximation, starting from a random
vertex but doing no walk �l=0� produces an exponential dis-
tribution seen by the very short-tailed distribution in all cases
for the l=0 lines of Fig. 3. This is also illustrated in the
semilog plot of Fig. 4. On the other hand, any walk of l
�1 produces a distribution with a power-law-like tail that is
much longer than the exponential distributions �9� of the zero
step walks. The �v=1� variant of the algorithm, where a new
walk is started only for every new vertex, with l, m, and �
fixed, produces very consistent degree distributions for l
�1 �Fig. 3, top left panel�. This is essentially the algorithm
used by Saramäki and Kaski �15�. When l is small, other
variations of the walk have an effect on the slope of the
degree distribution. In particular, the variants using a Markov

7One can vary this aspect. By using a biased walk, say choosing
neighbors preferentially based on color of vertices or weights of
edges, or based on other vertex properties such as the degree or
clustering of the target, one might get interesting variations.

8The general network with redirection model in Refs. �13,22� is
similar to our single step walks with a stochastic element �v&4�
=1, and there good power laws were also noted.

9In one run with an implementation of an algorithm exactly as
stated, so allowing multiple edges and edges connected to one ver-
tex only, with N=106 vertices and E=2�106 edges, using a walk of
fixed length of seven steps and starting a new walk from a random
vertex for every new edge added, and �=1, there were just 76
double edges produced, with no triples or higher. In Ref. �15� the
graph generated was simple.

T. S. EVANS AND J. P. SARAMÄKI PHYSICAL REVIEW E 72, 026138 �2005�

026138-4



process for a single step walk �e.g., l=1, v=15� fit a power
law in their tails which is closer to �=5 �Fig. 3, bottom
panel�. This value corresponds to the earlier discussion,
where a probability �1− pl� of making a zero step walk from
a random vertex start �in option �c�� can be taken as a first
approximation to be equivalent to the probability pv for ran-
dom vertex attachment in the mean field equations �6�. Our
one step Markov walk results �cases l=1 and v=5, 7, 15 in
Fig. 3� support this and will be considered again with Fig. 8
below. Likewise the variation with the length of walk l is
also shown in Fig. 10 below and different algorithms for the
same long seven step walks, Fig. 9 will be discussed in more
detail below.

In the case of l=1, starting a new walk from a randomly
chosen vertex for each of the m new links �v=3� �Fig. 3, top
right panel� appears to result in a much smaller power than
�=3, unlike in the �v=1� case where the vertices are selected
using one continuous walk. This is possibly because in the
v=3 algorithm all vertices chosen are only one step away
from a randomly chosen vertex, while in the v=1 case �15�,
one vertex is one step and the other two steps, on average 1.5
steps, from a randomly chosen vertex. This suggests that
there are weak correlations between properties of neighbor-
ing vertices, but not between next to nearest neighbors. Thus
the effective longer range of a v=1 one step walk over a v
=3 one step walk accounts for the differences between these
two variants.

Certainly, the longer the walk, the more the distributions
become identical, whatever the details of the algorithm for
our large N=106 networks, with tails approaching a power
law with powers around �=3.

Varying the average degree 2m but holding the number of
edges fixed shows nothing of note except when m=1, i.e.,
where we generate a tree graph with no loops, as one can see
in Fig. 5.

B. Finite-size effects

The degree distributions discussed above are not simple
power laws. This is to be expected since the solutions to the
mean field equations do not predict this as Eq. �12� shows.
Also the mean field equation is itself an approximation, but it
should be closest to models with genuine preferential attach-
ment. Figure 6 displays the degree distribution for networks
generated with algorithms where the random walks start
from an end of a randomly chosen edge ��v&1�=0�, com-
pared against the numerical mean field solutions. The data
fits the finite N mean field solutions well, with the deviation
from mean field comparable to the apparent statistical varia-
tion and systematic effects from the logarithmic binning.
However, it is clear that the data have large fluctuations and
so are poor for large degrees, k�kcont.

Given that the mean field solutions �12� are an excellent
representation of genuine preferential attachment models, it
is interesting to see if this is useful for the results of all
random walk models. However, before we look at more data
we need to consider the sizes of the scales in our finite sized
examples to understand deviations from a pure power law.
For large scales, k
k1, modifications to a pure power law
result from a finite size correction similar to the Fs �14�
found for pure preferential attachment models. However, this
correction is not of practical importance by as definition
there are essentially no data for k
k1. The data are best for
k�kcont of Eq. �10�. In practice this scale is not large, for a
million vertex graphs �few data sets have bigger graphs� kcont
is only10 of order 100. Thus most data sets, and certainly our

10For the mean field model solution �13� with m=2 the large
scales are kcont=105 and k1=796 �N=105�, kcont=227, k1=2520,
and �N=106�. In fact the degree with local power �eff �15� closest to
the theoretical value is found just above kcont at kmax=149 for N
=105 while for N=106 this is at kmax=388.

FIG. 2. �Color online� Degree distributions p�k� for networks of
size N=106, generated using random walks started from a random
end of a randomly chosen edge. The top panel displays the raw
degree distribution, and the bottom the degree distribution normal-
ized by equivalent mean field t→� solution p��k�, with finite size
correction Fs visible for k�kcont. All variations with these types of
algorithm �v&1=0� show the same behavior. Here, one vertex
��=1� with two edges �m=2� are added per time step. The results
are shown for average walk lengths of l=0 �crosses�, 1 �squares�,
and 7 �circles� steps, with data averaged over 100 runs. In this
example, a new walk is started for every new edge added �v=2
algorithm�.
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FIG. 3. �Color online� Log-log plots of degree distributions p�k� for N=106 degree networks generated by random walks started from a
randomly chosen vertex ��v&1�=1�, with one vertex ��=1� and two edges �m=2� added at each time step. In each graph, the results are
shown for average walk lengths l of 0 �crosses�, 1 �squares�, and 7 �circles� steps, with data averaged over 100 runs. In the top row, the walk
length is fixed to be length l��v&4�=0�, whereas in the middle row the length is varied by using a Markov process ��v&4�=1�. In the left
column all m new edges are attached to vertices chosen in one continuous walk ��v&2�=0�, whereas in the right column a new walk is
started for each edge added ��v&2�=1�. The algorithm used for the bottom figure has variable numbers of edges and variable walk length
�v=15�. Multiple edges are allowed here.
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model runs, are actually mesoscopic systems. It also means
that there are significant deviations from a power law be-
cause of the small scale effects. For instance, the mean field
large time solution �13� shows deviations from the inverse
cubic large degree behavior for degree scales k
O�1�.
These small scale deviations are finite N effects in the sense
that kcont is finite only for finite N and is in practice close to
1.

We can illustrate the problem by studying the mean field
solutions, fitting a power law to neighboring points and esti-
mating the power � through

�eff�k� = −
ln�p�k + 1�/p�k��

ln��k + 1�/k�
. �15�

In fact for pure preferential attachment models this effective
measure of the power law coefficient � is always below the
large N value for any useful degree k since using Eq. �13� we
have

�eff�k� = 3�1 −
1

k
+ O� 1

k2	� �1 � k � k1� . �16�

For N=106 �larger than most data sets� kcont
100 is the larg-
est degree with useful data so we would expect the local
power to be at least of order 1% below the large N value
associated with the formation mechanism for the graph. So
even in this perfect pure preferential attachment model,
simple power law fits to reasonable data sets are going to
underestimate the power which in turn would lead to a mis-
understanding of the underlying formation mechanism, e.g.,
though formulas such as Eq. �8�. In practice, results are
likely to be worse than this.

The discussion above highlights the problems in interpret-
ing any power fitted to finite N data. With these warnings in
mind let us now turn to more general random walk models

and look at the power law behavior, focusing more on the
comparison between the various random walk algorithms.
We will also compare against the appropriate numerical
mean field equation solutions, for which we have a complete
understanding of the finite size effects.

First it is interesting to note that, while even short walks
have long-tailed distributions that are well approximated by
a power law �for N=106 at least�, the different algorithms do
make a difference to the power. The best fit to the finite N
mean field value is that using a walk of fixed length, fixed
numbers of edges and vertices added each time and a new
walk started only with every new vertex added �v=1� which
is essentially the original Saramäki-Kaski algorithm, as Fig.
7 shows. This has a power which is always below the large N
prediction of 3 but it is close to the mean field solution.

As was noted earlier, when a Markov process is used to
choose walks of random length �option �c�� this simulates a
mixed preferential attachment and random attachment algo-
rithm. For such cases with an average walk of length l=1
half the edges are connected to a random vertex so we would
expect a power of 5. Interestingly this is never quite reached
so a network of a million vertices is still not large enough
though the data are clearly tending towards this expected
value, and it is certainly bigger than the �=3 power found
when a fixed walk is used. Figure 8 shows this.

On the other hand, other variations of the walk algorithm,
even for long walks, l=7, while equally well approximated
by power laws, have powers which can be consistently 10%
or 20% higher than the finite N mean field solution as Fig. 9
shows. This effect mitigates the finite N reduction in the
effective power as compared to the large N mean field pre-

FIG. 5. �Color online� The degree distributions normalized
against the appropriate large network solution p��k� for fixed num-
ber of edges E=2�106, with one vertex ��=1� added at each time
step ��=1� but with the average degree �2m� varied. Plotted against
log10�km1/2� to take account of large scale finite size effects since
here the number of vertices is N�1/m. For random walks starting
from a random vertex for every new edge, of fixed length l=7 and
averaged over 100 runs. Note that the tree graphs formed when m
=1 �squares� are the only ones showing a strong deviation from the
expected cubic power law, but they still show good power law
behavior with a power of ��2.0.

FIG. 4. �Color online� Semilog plots of degree distributions p�k�
for N=106 degree networks, generated using walks of fixed length
started from a randomly chosen vertex for each new edge ��v&1�
=3�, with one vertex ��=1� and two edges �m=2� added at each
time step. The walks are of fixed lengths l of 0 steps �crosses� with
a clear exponential distribution, and of fixed lengths 1 �squares� and
7 �circles� steps. Data are averages over 100 runs. Multiple edges
are allowed here.
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diction �here 3.0�. It is clear from this that while changes in
the random walk algorithm and parameters do not alter the
shape of the distribution from one that is roughly approxi-
mated by a power law, it does produce differences in the
measured powers.

As noted, the large N corrections occur at high degrees
k
k1 where the data are poor anyway; for all practical pur-
poses we may as well compare against the long time mean
field solution p��k� of Eq. �13�. This is done in Fig. 9 for
varying v and in Fig. 10 for varying l. Again the evidence for
power law behavior is clear from even the shortest walks, but
only the longer ones come close to the exact mean field form
expected for graphs of this type. Walks which contain some
zero length walks �v=7 and v=15� show larger deviation
reflecting the way they mimic mixed preferential and random
attachment.

Overall we see that the appearance of a long tail and
scale-free behavior is a robust result of all nontrivial walk
algorithms. This is presumably because the relevant scale is a
correlation distance for the degree of vertices � steps apart,
and it appears that ��1. However, the power of the distri-
bution varies considerably and is sensitive to the details of
the algorithm.

C. Global length scales

The diameter and average shortest path length were not
studied in Ref. �15�. We note that in our random walk algo-
rithm they show the expected behavior of scaling as ln�N� as
Fig. 11 shows. The average shortest distances between points
and the diameters �a lower bound at least� are shown for
different total numbers of vertices N, with the average degree
held fixed �m=2� and a walk length of seven �l=7� for an
exemplary algorithm. Both clearly scale with ln�N�. Other
variations of the walk algorithm show similar behavior
though the diameters and shortest distance measures do de-

pend on the particular random walk algorithm used.
Figure 12 shows how average shortest distances and the

diameters vary for different fixed numbers of vertices N
=106, fixed average degree K=4 but varying length for the
random walk. Just as in the case of the clustering coefficient
�15� there is an interesting pattern for odd and even walk
lengths when the walks are of fixed length �here the v=3
runs�. This is an artifact of the discrete nature of the algo-
rithm because there is a good chance on short walks that one
returns to the original vertex when the length of the walk is
even. It is not seen in the smoother algorithm of the v=15
runs where the number of edges added and the number of
steps taken is varied but the averages are kept the same. As
the walk lengthens we are tending to a fixed value suggesting
that the simplest algorithms generate some correlations for
short walks.

FIG. 6. �Color online� Degree distribution p�k� from random
walk algorithm �N=106 , �=1, v=2, l=0, m=2, averaged over 100
runs� normalized by the numerical solutions to the mean field equa-
tions pmf,num�k�. The vertical lines indicate the characteristic scales
kcont �left� and k1 �right� and the results show close agreement below
these scales.

FIG. 7. �Color online� Comparison of one and seven step walks
�l=1 crosses, l=7 triangles� for the Saramäki-Kaski style algorithm
N=106 , �=1, m=2, v=1. The effective power ��k� at the top com-
pared against numerical mean field solution shows reasonable
agreement even for short walks. On the bottom data is normalized
by the large N mean field solution for graph of similar
characteristics.

T. S. EVANS AND J. P. SARAMÄKI PHYSICAL REVIEW E 72, 026138 �2005�

026138-8



V. WEIGHTED GRAPHS

Many graphs are not simple graphs but their vertices and
edges often carry other information. This is readily taken into
account by considering the edges to be weighted �26–30�, so
that every edge is characterized by its weight w. Then, a
natural generalization of vertex degree is the vertex strength
s �27�, defined as the sum of weights of edges connected to
the vertex. The weights provide an additional degree of free-
dom, and their dynamics can be coupled to network evolu-
tion. Recently, Barrat et al. �28� �BBV� proposed an algo-
rithm where networks are grown based on a strength-driven
preferential attachment rule. In the BBV model, new nodes
joining the network are connected to vertices chosen with a
probability proportional to their strength with links initially
having unity weight. Then, an amount of �* of extra weight
is divided among the old edges of each parent vertex in pro-
portion to their weights: wij→wij +�*wij /si. This leads to
asymptotic power law distributions of both the vertex de-
grees and the vertex strengths, with an exponent �= �4�*

+3� / �2�*+1�, i.e., the power law gets broader with increas-
ing �*. Also the distribution of weights follows an asymptotic
power law, P�w�
w−�, where �=2+1/�*.

In the following, we will show that the walk algorithm
can readily be generalized to the weighted case, providing a
natural model for evolving weighted networks. We will focus
just on the weight aspect of the problem and work in this
section with a basic random walk algorithm, so that we al-
ways use walks of fixed lengths and at every time step add
one vertex ��=1� and add a fixed number of edges m, each
attached at one end to the new vertex.

The algorithm we use is as follows. The network dynam-
ics is divided into two aspects: �i� network growth and �ii�

modification of the existing weights, which both take place
successively during each time step t. Both cases are based on
random walks, where we modify the random walking rule so
that the next step in the walk is always chosen so that the
probability of following a link is directly proportional to its
weight, i.e., if the walker is located at vertex vi, it next
moves to vertex v j with the probability wij /�kwik, where the
sum is over all neighbors of vi.

With the exception of the above modification, the network
growth phase proceeds as detailed earlier, so that the m ver-
tices are chosen using random walks of length l. If we as-
sume that there is no correlation between the strength of
neighboring vertices, this reduces to the simple case of

� = s/S�t� , �17�

that is, we will have pure preferential attachment in terms of
strength rather than degree. When the parent vertices have
been selected, an initial weight of w0 is assigned to the new

FIG. 8. �Color online� Variation of the effective power ��k� for
different variants of the random walk algorithm but for walks of
average length of one step. All with N=106, �=1, m=2, and l=1.
The v=1 case �crosses� always uses one step random walks and is
close to the large N value of �=3. The Markov process walk though
is expected to be similar to a mixed random or preferential attach-
ment algorithm with 1/2= pl� pv so we expect �=5 in the large N
limit. Indeed the v=15 �squares� example could be tending towards
this value and certainly has a much higher power.

FIG. 9. �Color online� Variation of the power law behavior for
long walks with different variants of the random walk algorithm.
All with N=106, �=1, m=2, and l=7. First the effective power with
the straight line for the corresponding numerical mean field solu-
tion. Second the deviation from the large N mean field solution.

SCALE-FREE NETWORKS FROM SELF-ORGANIZATION PHYSICAL REVIEW E 72, 026138 �2005�

026138-9



edges. Then, we modify the existing weights by performing a
second type of walk so that

�i� to start the random walk we choose a vertex v j in the
existing graph G�t�, choosing at random from a uniform dis-
tribution;

�ii� now make one step in a random walk on the graph by
choosing one of the neighbors of v j at random using the
above biasing rule—the edge we follow has its weight in-
creased by �;

�iii� repeat the previous step ld times.
The strength distribution in the mean field approximation

follows a similar equation as for the degree, namely

n�s,t + 1� − n�s,t� = rs�− n�s,t���s,t� + n�s − �,t���s − �,t��

+ ��s,w0
, �18�

rs ª �2ld + �w0/��� . �19�

The total strength S�t� is given by

S�t� = � sn�s,t� = S�0� + 2�ld� + w0� �20�

while now N�t�=N�0�+ t. The analysis of the strength distri-
bution is then exactly as before, and for large graphs we find
that the asymptotic form for the distribution is a power law,

lim
s→�

lim
t→�

n�s,t� = s−�s, �21�

�s =
3m + 4ld�

m + 2ld�
. �22�

Note the relation to the BBV model’s exponent for the
strength distribution �28�, �BBV= �4�*+3� / �2�*+1�. The total
increase of weight in the modification phase equals �=m�*

in the BBV model, and �= ld� in our weighted walker
model. Both exponents can be rewritten using this quantity
as �= �3m+4�� / �m+2��.

Now, we may expect that for individual vertices k�s,
because in the network growth phase the probability that a
random walk arrives at a given vertex is proportional to its
strength. Substituting this as an ansatz we find that the de-
gree distribution also follows a power law with �k=�s. Note
that the same exponents also emerge from analysis based on
continuum mean field rate equations in the same manner as
done in Ref. �28�.

It is also possible to apply the mean field approach to the
weights on each edge. In the limit of N→� , t→� we again
find a power law for the distribution of weights of

p�w� � w−�, �23�

with the exponent �=2+m / �ld��. This also reproduces the
form found in Ref. �28�.

We can conclude that the main characteristic distributions
of networks grown with the weighted walker model are
equivalent to the ones of the BBV model. However, the mod-
els are not identical. We have deliberately chosen to start the
weight modification walks from randomly selected vertices,
instead of ones connected to newly joined vertices. This il-
lustrates that the distributions are of a general nature and a
result of strength-driven attachment in combination with
preferential increase of weights—strong weights get stron-
ger, a feature that is implicitly present in the BBV model in

FIG. 10. �Color online� Data are for random walk algorithms
starting a new walk from a new random vertex for every edge
added, making a fixed length walk �v=3�, creating graphs of aver-
age degree 4 �m=2� and N=106 vertices. The length of the walk is
varied from l=1 to l=7. Data are the average of 100 runs. Note that
again there is clear evidence of good power law behavior even for
the short walks. However, there is significant deviation from the
form of the mean field solution for short walks, which decreases for
longer walks. Also note evidence of some finite size features, Fs, for
large degrees k
1000. The mean field solution for the equivalent
graph is the continuous line in the center. The mean field calculated
values for kcont �left� and k1 �right� are indicated by the vertical
lines.

FIG. 11. �Color online� Average shortest distances and diameters
for different total numbers of vertices N, with the average degree
held fixed �m=2�. The error bars on data points are drawn but are
comparable with the size of the symbol. The data are for 100 runs
for a v=3 algorithm where a new random walk starting for every
edge added �m=2 per new vertex� and of fixed length l=7. The
straight lines are a best fit to the data.
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the form of dividing the weight increase proportionally
among edges. Furthermore, as shown for unweighted net-
works elsewhere in this paper and in Ref. �15�, we expect
other characteristics such as the degree of clustering and the
network diameter to depend on the random walk lengths.
Especially, with short growth-phase random walk lengths l,
the networks are expected to show high degrees of cluster-
ing, a feature found in several real-world networks. We
choose to leave further investigations of these issues for fu-
ture work.

Numerical results

Figure 13 illustrates the probability distribution for
strength p�s� calculated from simulating the random walker
network growth process, together with the mean field predic-
tion of Eq. �18�. The networks were grown to size N=2
�105, with l=15, ld=30, m=4, and � as illustrated. The
results are averages over 1000 realizations. They fit the mean
field power laws of the form �22� as Fig. 13 shows.

As noted, we expect in this algorithm that the degree dis-
tribution in this weighted random walk algorithm will show
the same form as the strengths and this is seen in Fig. 14.
Finally, Fig. 15 illustrates the power law distribution of
weights. Also in this case the slopes match the mean field
approximation of Eq. �23�.

VI. CONCLUSIONS

Random walks on graphs provide a variety of different
types of networks, as seen in the variations in distance

scales.11 However, apart from some special cases in the limit
of zero length �no� walks, they are invariably characterized
by having a degree distribution with a very long tail, and a
power law will often be a sufficiently good description of
this tail.

We have stressed that most networks in numerical studies
or in studies of real systems are mesoscopic systems. That is,
even for systems of the order of a million vertices, finite size
effects are noticeable. For instance, a simple power law fit to
data from a theoretical model should give a power that is
anywhere from 0.1% to 10% below that expected for the
infinite sized graph due to the effects of small degree devia-
tions from simple power laws. Further, our numerical studies
are idealized with 100 or 1000 examples used so we expect
real noisy single data sets will be harder to interpret. Note
also that such differences from an exact power law are hard
to detect by eye on log-log plots of distributions, even in our
idealized situations. Thus while power laws reported in the
literature may be an “acceptable” description of a data set in
many circumstances, it may be difficult to distinguish be-
tween different underlying processes or even between differ-
ent types of degree distribution �7�.

However, given that proviso, we believe that the random
walk algorithm does provide one of the few realistic expla-
nations as to why so many different systems have degree
distributions which are consistent with power laws. Further,
we suggest that many of these real-world networks are in fact
genuine scale-free networks and would have pure power
laws in the infinite time, infinite graph limit. We have studied
a wide set of variations on the basic random walk algorithm
of Saramäki and Kaski �15�, including an extension to more

11Also for clustering coefficients as seen in Ref. �15�.

FIG. 12. �Color online� Average shortest distances and diam-
eters for varying lengths of random walk, fixed vertex, and edge
numbers �N=106 ,�=1,m=2� with walks starting from a random
vertex. The data shown are for two types of algorithm. Crosses are
for fixed walk length starting a new walk for every edge �v=3
algorithm�. The circles and triangles have a variable number of
edges added per vertex and a new walk of variable length is used
for every new edge but averages are kept as before �v=15 algo-
rithm�. Note the dependence on the odd or even nature of the v
=3 case and the clear trend to fixed values as the walk length gets
longer. Error bars are shown but are smaller than the sizes of the
symbols.

FIG. 13. Distribution of vertex strength p�s�, averaged over
1000 realizations of N=2�105 , m=2 networks grown using the
weighted walk algorithm with l=15, ld=30, and �=0.01 ���, �
=0.05 ���, and �=0.2 ���. The solid lines indicate slopes for re-
spective asymptotic power laws calculated using Eq. �18�. Inset:
p�s� averaged over 2500 realizations of N=5�104 networks, with
�=0.1, for various walk lengths l=1, 2, 3, 5. The power-law behav-
ior is visible even for the shortest walks.
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realistic weighted graphs. In almost all cases we have found
that power laws emerge naturally. Various powers for the
power law are possible depending on the algorithm and on
its parameters but a power-law-like distribution is an ex-
tremely robust result of the generic random walk algorithm.
The random walk algorithm exploits the structure of the
graph12 yet it requires no global information to operate. This
is in sharp contrast with most numerical and algebraic analy-
ses, for example, Refs. �8,9,28�, where preferential attach-
ment is assumed and implicit global information is used in
the normalization. Thus in this sense we see the random walk
algorithm as a process of self-organization, the very structure
of the graph inevitably leads microscopic local processes to a
scale-free form.

While this may be useful way to understand why so many
scale-free networks are seen in the real world, the walk al-
gorithm could be useful in practical problems. Due to its
robustness and purely local nature, the random walk algo-
rithm could be used to engineer new networks which self-
organize to a scale-free form. For instance, this might be of
use for distributed computing and peer-to-peer network prob-
lems.
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APPENDIX: MEAN FIELD FINITE SIZE CALCULATIONS

The mean field equation for the degree distribution for a
network grown with mixed random and preferential attach-
ment was given in Eq. �4�. In the long time, large graph limit
for pure preferential attachment �corresponding to our pa-
rameters pv=0, �=1� the solution is p�k , t�= p��k�Fs�k , t�
�Eq. �12�� where the finite size corrections to the infinite time
distribution p� are contained in the function Fs. A solution
for the case where the average degree of the network tends to
2 �m=2 here� was given by Krapivsky and Redner �13� �see
also Refs. �23–25��. We have followed the approach of Ref.
�13� and generalized this to arbitrary m. We define a gener-
ating functional

F = �
t=1

�

�
k=m

�

wt−1zkn�k,t� . �A1�

Switching to variables x and y where

x = −
1

4
ln�1 − w� +

1

2
ln� z

1 − z
	 , �A2�

12Indeed, as far as the degree distribution goes, a simple preferen-
tial attachment model need have no graph present at all. For in-
stance, Simon �8� makes no reference to a graph though one can
invent one if one wishes for his examples. Conversely, while the
web provides a natural example of a network, one can easily count
the links on a web page and hence obtain the outgoing degree
distribution without any reference to an underlying graph structure.
The preferential attachment model of Barabási and Albert �9�, who
refer to the graph, is no different to that of Simon �8�, who has no
graphs, as far as the degree distribution goes.

FIG. 14. Degree distribution p�k� for the same networks as in
Fig. 13. The solid lines indicate slopes for mean-field power laws.
The inset shows the distribution over the whole k range.

FIG. 15. Weight distribution p�w� for N=2�105 networks, av-
eraged over 103 realizations, with m=2, l=15, ld=30, and � as
shown in the legend. The solid lines indicate slopes for mean field
power laws of Eq. �23�.
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y = −
1

4
ln�1 − w� −

1

2
ln� z

1 − z
	 ,

the mean field equation �4� becomes

1

2

�F

�x
− F =

zm

�1 − w�2 �A3�

which has the solution

F = 2e2xe4y�x

dx�
e�2+m�x�

�ex� + ey�m
. �A4�

Now one must impose some initial conditions to provide the
boundary conditions needed to find the explicit solution. The
first vertices tend to be the largest degree vertices in the long
run and so the shape of scaling function Fs is sensitive to this
choice. We choose

n�k = m,t = 1� = 2, n�k � m,t = 1� = 0 �A5�

which gives

F�x,y� = 2e2xe4y�
−y

x

dx�
e�2+m�x�

�ex� + ey�m
+ Fb�y� , �A6�

Fb�x,y� =
2e2xe2y

�1 + e2y�m . �A7�

The integral can be performed in terms of a variable q=ex�

+ey.
Now starting from Eq. �A1� we see that by substituting in

the form �12� we can show that

�3

�z3 �z2F� = �
t=1

�

�
k=m

�

wt−1zk−m−1�N0 + t�2m�m + 1�Fs�k,t� ,

�A8�

where N0=1 is the number of vertices at t=0. Working in
terms of variables �=e−2xe−2y = �1−w� and �=eye−x= �1
−z� /z we are interested in the limit where w ,z→1 or equiva-
lently � ,�→0 such that � /�1/2=s is constant. In this limit

we find that the left-hand side of Eq. �A8� can be written as

�3

�z3 �z2F� =
1

�5/2Jm�s� , �A9�

Jm�s� = 2m�m + 1���
n=1

m=2
1

�1 + s�n +
m + 2

�1 + s�m+3� �A10�

for m=1, 2, 3, 4 and we conjecture the same for higher m.
The m=1 value coincides with that in Ref. �13�.

Now we look at the right-hand side of Eq. �A8� and as-
sume that the scaling function is of the form Fs=Fs�k / t1/2�.
We are interested in the large degree and time effects so we
can approximate the sums by integrals from zero to infinity
over the variables �=k�1/2 �for the k sum� and �= t� �for the
t sum�. In the same way we can approximate wt�e−� and
zk�e−s� and interpret these integrals as Laplace transforms.
In particular the right-hand side of Eq. �A8� is the Laplace
transform over � �or k� of a function � where

���� = 2m�m + 1��
0

�

d� �e−�Fs��/�1/2� . �A11�

Thus Eq. �A8� can now be expressed as the inverse Laplace
transform,

���� =
1

2�i
�

c−i�

c+i�

e�sJm�s� �A12�

=2m�m + 1�e−���
n=0

m+1
�n

n!
+

�m+2

�m + 1�!� . �A13�

Comparing this with Eq. �A11� we have

���� = 2m�m + 1��4�
0

�

d�e−�2���Fs�� −1/2�� , �A14�

where �=� /�2. By treating this as the Laplace transform in �
of a function G���=�Fs�� −1/2� with respect to a variable p
=�2 we just have to use inverse standard Laplace transforms
to produce the answer �14�.
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